Q1. This question is about the analysis of organic compounds. (a) The table below shows the results of chemical tests on three organic compounds. Complete the empty boxes in the table. | Chemical test | | ОН | | |------------------------------------|-------------------------|-------------------|-------------------| | Add bromine water | orange to
colourless | | no visible change | | | no visible change | bubbles of gas | no visible change | | Warm with
Fehling's
solution | no visible change | no visible change | | (3) | (b) | 0.500 g of a hydrocarbon is analysed. | |-----|---| | | The hydrocarbon contains 0.450 g of carbon. | Calculate the empirical formula of this hydrocarbon. | Empirical formula | | |-------------------|-----------------| | | (3) | | | (Total 6 marks) | ## Q2. This question is about infrared spectroscopy. (a) Compounds **A** and **B** both have the molecular formula $C_4H_8O_2$ **Figure 1** shows the infrared spectra of compounds **A** and **B**. Use the infrared spectra to deduce a possible structural formula for compound **A** and a possible structural formula for compound **B**. Possible structural formula of A Possible structural formula of **B** (b) **Figure 2** shows the infrared spectrum of either pent-1-ene or 2-methylbut-2-ene. Figure 2 Outline how to use the infrared spectrum to determine whether the compound is pent-1-ene or 2-methylbut-2-ene. (2) (c) Figure 3 shows the infrared spectrum of methane. Figure 3 | Use information from Figure 3 to explain why methane acts as a greenhouse gas. | | | |---|--|--| | | | | | | | | | | | | | | | | (1) (Total 5 marks) | | 2 | |---|----| | u | 5. | This question is about simple test-tube reactions to identify organic liquids. | (a) | Silver nitrate solution can be used to distinguish between propanoyl chloride and 1-chloropropane. | | |-----|---|---------------| | | Give the observations you would expect when a few drops of silver nitrate solution are added to separate samples of propanoyl chloride and 1-chloropropane. | | | | Observation with propanoyl chloride | | | | Observation with 1-chloropropane | | | | | (2) | | (b) | Three unlabelled bottles are known to contain either propan-1-ol, propanal, or propanone. | | | | A sample of each liquid is warmed with a few drops of Fehling's solution. | | | | Identify the liquid that reacts with Fehling's solution and give the expected observation. | | | | Suggest a further simple test-tube reaction that can be used to distinguish between the remaining two liquids. | | | | Give the expected observation with the liquid that reacts. | | | | Liquid that reacts with Fehling's solution | | | | Observation | | | | Further test | | | | Observation | | | | (Total 5 n | (3)
narks) | ## Q4. This question is about the analysis of organic compounds. For each pair of compounds in parts (a) and (b), give a reagent (or combination of reagents) that could be added separately to each compound in a single reaction to distinguish between them. State what is observed in each case. | (a) | CH ₃ CH ₂ CHO and CH ₃ CH ₂ CH(OH)CH ₃ | | |-----|---|-----| | | Reagent(s) | | | | Observation with CH ₃ CH ₂ CH ₂ CHO | | | | Observation with CH ₃ CH ₂ CH(OH)CH ₃ | | | | | (3) | | (b) | Cyclohexane and cyclohexene | | | | Reagent(s) | | | | Observation with cyclohexane | | | | Observation with cyclohexene | | | | | (3) | (c) The table below gives the precise relative molecular masses (M_r) of some organic compounds measured using high resolution mass spectrometry. | Molecular
formula | (isH ₁₂ | | C ₆ H ₆ | |----------------------|---------------------|---------|-------------------------------| | M r | 72.1416 | 70.1260 | to be calculated | Use these data to find the relative atomic masses (A_r) of hydrogen and carbon. Give your answers to 4 decimal places. Use these calculated A_r values to find the relative molecular mass (M_r) of C_6H_6 Give your answer to 4 decimal places. A_r of carbon | A _r of hydrogen | | |----------------------------|--| *M*_r of C₆H₆ _____ (3) (Total 9 marks) ## Q5. A student plans a series of chemical tests to confirm the identities of four organic liquids. This is the student's method. To separate test tubes containing samples of each liquid: - **Test 1** add potassium dichromate(VI) solution and warm gently - Test 2 add Fehling's solution and cool in iced water - **Test 3** add sodium hydrogencarbonate solution and test any gas produced with a lighted splint - **Test 4** add bromine water and shake at room temperature. - (a) Identify the missing reagent needed in **Test 1**. (1) | (b) | In addition to the missing reagent in Test 1 , there is a mistake in the method for two of the other tests. | | |-----|---|-----| | | State the two mistakes. | | | | Suggest how each of the mistakes should be corrected. | | | | Mistake 1 | _ | | | Suggestion | _ | | | Mistake 2 | _ | | | Suggestion | _ | | | | (2) | | (c) | The missing reagent is added and the mistakes are corrected. | | | | Identify the liquid(s), ${f J}$, ${f K}$, ${f L}$ and ${f M}$, that would react in each test. | | | | State the expected observation for each reaction. | | | | Liquid(s) that react in Test 1 | | | | Expected observation | - | | | Liquid(s) that react in Test 2 | _ | | | Expected observation | - | | | Liquid(s) that react in Test 3 | _ | | | Expected observation | - | | | Liquid(s) that react in Test 4 | - | | | Expected observation | | | | | (-/ | (d) The figure below shows the apparatus that is used to separate a mixture of liquids **K** and **M** using fractional distillation. Suggest labels that should be added to positions **S**, **T** and **U** in the figure. Explain why fractional distillation is preferred to simple distillation to separate liquids ${\bf K}$ and ${\bf M}$. | Label S | | | | |--------------------------|--|--|--| | Label T | | | | | Label U | | | | | Explanation __ | | | | | | | | | (3) (Total 14 marks) | | • | |---|----| | u | D. | A student has samples of these four compounds but does not know which is which: - butanoic acid - 2-methylpropanal - 2-methylpropanoic acid - 2-methylpropan-1-ol - Step 1: Two of these compounds can be identified by simple chemical tests. - Step 2: The other two compounds, that contain the same functional group as each other, can then be distinguished using a spectroscopic technique. | Describe how these two steps could be used to identify which compound i which. | S | |--|---| | | _ | | | | | | _ | | | - | | | - | | | - | | | _ | | | | | | _ | | | - | | | - | | | - | | | - | | | | (Total 6 marks)