Q1.

This question is about the analysis of organic compounds.

(a) The table below shows the results of chemical tests on three organic compounds.

Complete the empty boxes in the table.

Chemical test		ОН	
Add bromine water	orange to colourless		no visible change
	no visible change	bubbles of gas	no visible change
Warm with Fehling's solution	no visible change	no visible change	

(3)

(b)	0.500 g of a hydrocarbon is analysed.
	The hydrocarbon contains 0.450 g of carbon.

Calculate the empirical formula of this hydrocarbon.

Empirical formula	
	(3)
	(Total 6 marks)

Q2.

This question is about infrared spectroscopy.

(a) Compounds **A** and **B** both have the molecular formula $C_4H_8O_2$

Figure 1 shows the infrared spectra of compounds **A** and **B**.

Use the infrared spectra to deduce a possible structural formula for compound **A** and a possible structural formula for compound **B**.

Possible structural formula of A

Possible structural formula of **B**

(b) **Figure 2** shows the infrared spectrum of either pent-1-ene or 2-methylbut-2-ene.

Figure 2

Outline how to use the infrared spectrum to determine whether the compound is pent-1-ene or 2-methylbut-2-ene.

(2)

(c) Figure 3 shows the infrared spectrum of methane.

Figure 3

Use information from Figure 3 to explain why methane acts as a greenhouse gas.		

(1)

(Total 5 marks)

	2
u	5.

This question is about simple test-tube reactions to identify organic liquids.

(a)	Silver nitrate solution can be used to distinguish between propanoyl chloride and 1-chloropropane.	
	Give the observations you would expect when a few drops of silver nitrate solution are added to separate samples of propanoyl chloride and 1-chloropropane.	
	Observation with propanoyl chloride	
	Observation with 1-chloropropane	
		(2)
(b)	Three unlabelled bottles are known to contain either propan-1-ol, propanal, or propanone.	
	A sample of each liquid is warmed with a few drops of Fehling's solution.	
	Identify the liquid that reacts with Fehling's solution and give the expected observation.	
	Suggest a further simple test-tube reaction that can be used to distinguish between the remaining two liquids.	
	Give the expected observation with the liquid that reacts.	
	Liquid that reacts with Fehling's solution	
	Observation	
	Further test	
	Observation	
	(Total 5 n	(3) narks)

Q4.

This question is about the analysis of organic compounds.

For each pair of compounds in parts (a) and (b), give a reagent (or combination of reagents) that could be added separately to each compound in a single reaction to distinguish between them.

State what is observed in each case.

(a)	CH ₃ CH ₂ CHO and CH ₃ CH ₂ CH(OH)CH ₃	
	Reagent(s)	
	Observation with CH ₃ CH ₂ CH ₂ CHO	
	Observation with CH ₃ CH ₂ CH(OH)CH ₃	
		(3)
(b)	Cyclohexane and cyclohexene	
	Reagent(s)	
	Observation with cyclohexane	
	Observation with cyclohexene	
		(3)

(c) The table below gives the precise relative molecular masses (M_r) of some organic compounds measured using high resolution mass spectrometry.

Molecular formula	(isH ₁₂		C ₆ H ₆
M r	72.1416	70.1260	to be calculated

Use these data to find the relative atomic masses (A_r) of hydrogen and carbon. Give your answers to 4 decimal places.

Use these calculated A_r values to find the relative molecular mass (M_r) of C_6H_6 Give your answer to 4 decimal places.

A_r of carbon

A _r of hydrogen	

*M*_r of C₆H₆ _____

(3)

(Total 9 marks)

Q5.

A student plans a series of chemical tests to confirm the identities of four organic liquids.

This is the student's method.

To separate test tubes containing samples of each liquid:

- **Test 1** add potassium dichromate(VI) solution and warm gently
- Test 2 add Fehling's solution and cool in iced water
- **Test 3** add sodium hydrogencarbonate solution and test any gas produced with a lighted splint
- **Test 4** add bromine water and shake at room temperature.
- (a) Identify the missing reagent needed in **Test 1**.

(1)

(b)	In addition to the missing reagent in Test 1 , there is a mistake in the method for two of the other tests.	
	State the two mistakes.	
	Suggest how each of the mistakes should be corrected.	
	Mistake 1	_
	Suggestion	_
	Mistake 2	_
	Suggestion	_
		(2)
(c)	The missing reagent is added and the mistakes are corrected.	
	Identify the liquid(s), ${f J}$, ${f K}$, ${f L}$ and ${f M}$, that would react in each test.	
	State the expected observation for each reaction.	
	Liquid(s) that react in Test 1	
	Expected observation	-
	Liquid(s) that react in Test 2	_
	Expected observation	-
	Liquid(s) that react in Test 3	_
	Expected observation	-
	Liquid(s) that react in Test 4	-
	Expected observation	
		(-/

(d) The figure below shows the apparatus that is used to separate a mixture of liquids **K** and **M** using fractional distillation.

Suggest labels that should be added to positions **S**, **T** and **U** in the figure.

Explain why fractional distillation is preferred to simple distillation to separate liquids ${\bf K}$ and ${\bf M}$.

Label S			
Label T			
Label U			
Explanation __			

(3)

(Total 14 marks)

	•
u	D.

A student has samples of these four compounds but does not know which is which:

- butanoic acid
- 2-methylpropanal
- 2-methylpropanoic acid
- 2-methylpropan-1-ol
- Step 1: Two of these compounds can be identified by simple chemical tests.
- Step 2: The other two compounds, that contain the same functional group as each other, can then be distinguished using a spectroscopic technique.

Describe how these two steps could be used to identify which compound i which.	S
	_
	_
	-
	-
	-
	_
	_
	-
	-
	-
	-

(Total 6 marks)